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A novel approach is presented, based on the integral form of the vorticity formu-
lation, in which the vorticity transport equation is solved by using the cell-centred
finite-volume method, while the velocities needed at the centre of each control vol-
ume are calculated by a modified Biot–Savart formula in conjunction with a fast
summation algorithm. The vorticity and mass conservation in the flow are guaran-
teed during the calculation by virtue of the finite volume approach and the method of
implementing the boundary conditions at the body surface. As an example, both the
early stage development and long term evolution of the flow around an impulsively
started circular cylinder are computed using the method. The present results are com-
pared with other numerical and experimental results for the same flow problem and
show good agreement.c© 2001 Academic Press

1. INTRODUCTION

Vorticity and its related quantities, such as circulation, played an important role in classic
theoretical fluid dynamics [2, 18]. More recently, with the advent and rapid development
of computer technology, vorticity-based methods have become one of the main focus areas
of research in computational fluid dynamics. These methods can be generally divided into
two categories, in terms of the governing equations upon which the numerical formulations
are constructed. One is based on the differential form of the Navier–Stokes equations,
either in the velocity–vorticity or velocity–vector potential (stream function for 2-D cases)
formulations. The other is the so-called differential-integral formulation [36], in which an
integral equation for calculating velocity explicitly from the vorticity field is employed in
place of the continuity equation and the definition of vorticity, while the vorticity transport
equation remains in the differential form. This latter formulation is interesting in that, first,
it separates the kinematics (velocity calculation) from the kinetics (vorticity redistribution),
which allows explicit, point-by-point calculation of velocity, and the velocity boundary
condition at infinity is exactly satisfied. Secondly, in this formulation, only the (usually
compact) fluid region with non-zero vorticity needs to be solved.
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During the past two decades, by using the differential–integral formulation, both the
grid-based Euler method and the gridless Lagrangian method have been used to advance
the solution in the space–time domain. The latter is usually referred to as the discrete vortex
method, which has become more popular in recent years. In the pioneering works of Wu and
coworkers, a finite difference scheme was used to solve the vorticity transport equation in the
transformed complex plane. The integral equation for the velocity was solved by using finite
Fourier series expansions of the field variables at each circular ring of the O-grid and partially
evaluated analytically [33, 35]. Meanwhile, to reduce the possibility of numerical diffusion
in the grid-based method, the Lagrangian discrete vortex method has been developed and
applied, notably by Chorin [8], Leonard [21, 22], Sarpkaya [28], and more recently among
others by Spalart [32], Koumoutsakos and Leonard [19], and Linet al.[24]. In this method,
the continuous vorticity field is represented by a number of overlapping vortex particles
which are tracked in the flow according to the local velocity calculated by the Biot–Savart
law. To combat the associated high computational cost of the velocity calculation, adaptive
fast summation algorithms have been developed [12, 15, 16], which reduce the operational
cost fromO(N2) to O(N log N) depending on the implementation details, whereN is the
total number of vortices in the flow. This method has been applied to calculate a number of
unsteady flow problems, such as bluff body flow [19] and the flow around a pitching aerofoil
under the condition of dynamic stall [24, 32]. Problems, however, with the discrete vortex
method are that, first, after some period of evolution of the vortices, the particle distribu-
tion may become uneven, thus destroying the overlapping condition which necessitates a
remeshing process [19]. In addition, a large number of vortices are needed to capture the fine
flow structures near the surface of the body. Secondly, it is not straightforward to include
viscous effects, including turbulence, in the calculation, although some developments have
been made recently [29]. Lastly, it is not clear how best to extend the method to 3-D flow
problems, due to the fact, among others, that the vortex particle representation in 3-D is not
divergence-free.

In this paper, a novel approach has been adopted for solving the differential–integral
form of the Navier–Stokes equations—namely, the cell-centred finite-volume method has
been applied to the integral form of the vorticity transport equation, while the velocities
needed at the centre of each control volume are calculated by using a modified Biot–Savart
formula in conjunction with an adaptive fast summation algorithm. The methods employed
to implement the boundary conditions and to calculate the vorticity creation at the body
surface ensure that both the mass and vorticity are conserved during the calculation. This,
along with the inherent conservative property of the finite-volume method, guarantees the
conservation of vorticity in the entire flow. Because the same strategy as the discrete vortex
method has been used to calculate the velocity, the present method can be easily coupled with
the discrete vortex method in the domain decomposition approach [9, 31]; i.e., the present
method can be used in the viscous region near the body surface and the vortex particle
method can be applied to the outer region of the essentially inviscid flow. Furthermore, it
is straightforward to extend the method to 3-D flow problems, although the question of
vorticity divergence remains.

In the following sections, the theoretical background of the method is reviewed, followed
by a detailed description of the numerical implementation, including the fast summation
algorithm and implementation of boundary conditions. By calculating the unsteady flow
around a circular cylinder at various Reynolds numbers, the accuracy and efficiency of the
method are demonstrated and the effect of different implementations of boundary conditions
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on the solution is analysed. Finally, some conclusions are drawn from the study and a brief
discussion of future work is given.

2. MATHEMATICAL FORMULATION

Two-dimensional incompressible viscous flow can be described by the vorticity(ω)–
velocity (Eu) form of the Navier–Stokes equations[36], which include

vorticity transport equation

dω

dt
= ∂ω

∂t
+ Eu · ∇ω = ν∇2ω (1)

continuity equation

∇ · Eu = 0 (2)

the definition of vorticity

ω = ∂v

∂x
− ∂u

∂y
. (3)

For the problem of flow around a closed body, the boundary conditions needed for solving
the governing equations consist of two parts, both of which are given in terms of velocity.
One is the so-called, far field condition in which the free-stream condition is applied at
infinity:

Eu = Eu∞. (4)

The other is the condition on the body surface where the no-slip and no-penetration condi-
tions are imposed

Eu = Eub(Exs, t), (5)

where Eub(Exs, t) represents the velocity at the body surface. For the present formulation,
however, only one of the no-slip and no-penetration conditions is needed to uniquely de-
termine the velocity field from the vorticity distribution using Eqs. (2) and (3), which in
turn determines the vorticity boundary condition needed for solving the vorticity transport
equation. Theoretically, in this aspect, it can be shown that [2, 23, 36], the no-slip boundary
condition and no-penetration condition are equivalent in determining the vorticity boundary
condition; i.e., implementation of no-slip condition leads to satisfying the no-penetration
condition, and vice versa.

For unsteady flow problems, initial conditions are also required to start the calculation.
This is achieved by either assuming that the flow starts impulsively from rest or prescribing
the velocity or vorticity distribution in the flow field.

It has long been known from the Helmholtz theory that the velocity field can be uniquely
determined from the vorticity field and relevant velocity boundary conditions. Quantita-
tively, an explicit relationship between the velocity field and vorticity field has been given
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by Wu and Thompson [36] through solving Eqs. (2) and (3) using Green’s identity and the
boundary conditions given in Eqs. (4) and (5),

Eu(Ex, t) = 1

2π

∫
D

ω(Ex′, t)Ek× (Ex − Ex′)
|Ex − Ex′|2 d A+ Eu∞, (6)

where the integral over areaD in Eq. (6) is taken over the portion of the region containing
non-zero vorticity in fluid and rotating solid body. Equation (6) is a particular application
of the Biot–Savart law. The use of Eq. (6) to calculate velocity from the integral over
vorticity also makes it possible that only the non-zero vorticity region needs to be solved,
which differs from most other vorticity-based methods in differential form of the governing
equations. Another issue in the vorticity-based formulation is the conservation of vorticity.
From this condition for a stationary body, it can be stated that the entire vorticity entering
the fluid region through the body surface(see Fig. 1) should always be zero,∮

bs
ν
∂ω

∂n′
ds′ = 0. (7)

The importance of this condition in constructing a numerical method will be discussed in
detail later.

It is well known that for incompressible viscous flow, the vorticity can only be generated
at the surface of the body due to the no-slip boundary condition. The vorticity in the interior
of the fluid domain, which in turn determines the velocity field through the Biot–Savart law,
is the consequence of diffusion and convection of the boundary vorticity. From this basic
idea, together with Eqs. (1) and (6) which represent the kinetic and kinematic aspects of
the entire flow problem, respectively, vorticity-based methods [8, 36], including the present
method, can be constructed. The kinematic step determines the velocity field induced by the
vorticity distribution and relevant boundary conditions, while the kinetic step redistributes
the vorticity within the flow domain by convection and diffusion. In the real world, these two
steps should occur simultaneously; however, in the numerical procedure, it is reasonable

FIG. 1. Definition sketch of the flow around a cylinder.
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to assume that the following three steps are needed to advance the solution to a new time
level:

1. calculation of vorticity creation in terms of vorticity flux into the flow through the
surface (boundary vorticity) by using Eq. (6) and implementing the relevant boundary
conditions—this process usually leads to a system of linear algebraic equations to be solved
at every time step with vorticity flux or boundary vorticity values as the unknowns;

2. calculation of the velocity using the Biot–Savart Law; note that, at this step, the
vorticity in Eq. (6) includes the newly created vorticity from the body surface through
viscous diffusion (flux).

3. redistribution of the vorticity in the flow field by solving the vorticity transport equation.

After step 3, the velocity boundary condition at the body surface is usually no longer
satisfied and we need to return to step 1, which constitutes a full loop.

The following sections will detail the specific methods used in the current study for each
part of the three steps.

3. NUMERICAL IMPLEMENTATION

3.1. Solution of Vorticity Transport Equation

The solution of the vorticity transport equation using the cell-centred finite volume
method is straightforward. For each control volumeÄc, see Fig. 2, the vorticity transport
equation can be written in the integral form

∂

∂t

∫
Äc

ω dÄ+
∫

s
Euω · En ds= ν

∫
s
∇ω · En ds, (8)

whereEn is the unit normal vector of the control volume surfaces.
In the present study, the two-stage, second-order Runge–Kutta method has been used to

advance the solution in the time domain and either the second-order central scheme (middle
point rule) or the upwind scheme, depending on the local grid Reynolds number, is used to
calculate the convective flux term for each of the cell faces. For diffusive fluxes, a simple
linear interpolation can be used for calculating the gradient for an orthogonal coordinate
system which is the case in the present study. If more general cases with non-orthogonal

FIG. 2. Control volume.
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coordinate systems are involved, the method involving the transformation of the derivative
into a surface integral using the Gauss theorem can be employed [13].

Since the vorticity transport equation, which redistributes the vorticity within the fluid
domain, is solved in the conservative form by using the finite volume approach, no vorticity
will be generated in this process by numerical errors and the only concern of vorticity
conservation will lie entirely on the process of vorticity generation at the solid boundaries,
which will be discussed later.

3.2. Velocity Calculation

Once the vorticity distribution in the flow is known, the velocities needed at the centres
of the control volumes with non-zero vorticity and some neighbouring control volumes
with zero vorticity can be calculated by using Eq. (6). By assuming the vorticity has a
uniform distribution within each control volume when evaluating the integral in Eq. (6),
which is consistent with the cell-centred finite-volume approach, the velocity at a pointEx j ,
in particular at the centre of each control volume, is given by

Eu j ( Exj , t) = 1

2π

Nv∑
i=1

∫
Äi

ωi (t)Ek× (Ex j − Ex′)
|Ex j − Ex|2 dÄi + Eu∞, (9)

whereNv is the total number of the control volumes on which the integral is performed.
For each control volumeÄi , by virtue of the following vector identities,∇ × ( f EG) =

f∇ × EG+∇ f × EG and
∫∫ ∇ × EG dÄ = ∫ EG× En ds, the integral in Eq. (9) can be trans-

formed into the circuit integral around the cell, see Fig. 3,∫
Äi

ωi (t)Ek× (Ex j − Ex′)
|Ex j − Ex′|2 dÄi (10)

= −
∫
Äi
ωi (t)Ek×∇′ ln |Ex j − Ex′| dÄi (11)

=
∫
Äi

∇′ × (ωi (t)Ek ln |Ex j − Ex′| dÄi (12)

=
∫

Si

ωi (t)Ek× En ln |Ex j − Ex′| ds (13)

FIG. 3. Velocity contribution from each control volume.
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= ωi (t)
4∑

k=1

El k

∫
lk

ln |Ex j − Ex′| dlk (14)

= ωi (t)ESi , (15)

whereEl k is the unit direction vector of the cell segmentlk and quadrilateral cells have been
assumed. To evaluate the integral, either an analytic expression or numerical approximation
can be used, and for the neighbouring cells, the integral needs to be calculated only once
for their common segment.

It is easy to check that in calculating the velocity at a point (cell centre), the influence of
all the cells with non-zero vorticity must be taken into account. This involves a calculation
of O(N2

v ) interactions forNv control volumes with non-zero vorticity, which can lead to a
large computational cost.

Fortunately, during the past decade, several fast summation algorithms have been devel-
oped originally for the discrete vortex method. In this study, the adaptive fast algorithm
proposed by Van Dommelenet al.[12] has been modified for calculating the velocity field.
The basic idea in the method is that when the velocity at the centre,Exi say, of a control
volumeÄi of areaAÄi is calculated, the influence of vorticity from the entire flow domain
can be divided into the near field, on which the direct summation using Eq. (15) will be
performed, and far field, in which a point vortex with strength0i = ωi AÄi located atExi is
used temporarily to represent the entire vorticity in the control volumeÄi and the indirect
fast summation method can be applied

Eu(Exi ) = ũ′(Exi )|near field+ ũτ (Exi )|far field (16)

in which we have

ũ′(Exi )|near field= 1

2π

ND∑
j=1

ω j (t)
4∑

k=1

El k

∫
lk

ln |Ex j − Exi | dlk (17)

and

ũτ (Exi )|far field = 1

2π

NF∑
j=1

0 j Ek× Exi − Ex j

|Exi − Ex j |2 , (18)

whereND and NF are the total number of control volumes which are eligible for direct
summation and indirect (fast) summation, respectively.

By using the complex notation, Eq. (18) can be expressed as

uτ (Zi )− i vτ (Zi ) = 1

2π i

NF∑
j=1

1

Zi − Z j
, (19)

whereZ is the complex position ofEx anduτ andvτ are the two components ofũτ .
The only criterion for calculating the near field or far field effects can be determined

by the following process. To implement the fast summation algorithm efficiently, a square
adaptive zonal decomposition is employed. The whole flow domain containing non-zero
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FIG. 4. Adaptive fast summation algorithm.

vorticity is initially contained in a single square zone. This is then divided into four sub-
zones. Each zone is then further subdivided into four new zones, provided that there is a
minimun number of particles in the zone, thus creating a hierarchical structure of zones
as shown in Fig. 4. For each zone, the parent zone and any children (sub-zones) of the
zone are recorded, along with which particles are stored in that zone. By using the complex
notation, the centres of the control volumei and the zone can be represented byZi andZc,
respectively. Then the contribution of the zone to the velocity at pointZi can be calculated
from a series expansion using Eq. (20) below, provided the distance betweenZi and Zc

is greater than some factor times the radiusλ of the zone so that the Laurent series will
converge

uτ (Zi )− i vτ (Zi ) =
Nt∑

k=1

αk

2π i (Zi − Zc)k
, (20)

whereαk =
∑Np

j 0 j (Zi − Zc)
k−1 andNp is the total number of vortex particles contained

in the zone. Once the influence of a zone is calculated, the children of this zone are then
ignored, as all the particles in the zone have been taken into account. If the centre of a control
volume is too close toZc for the series to converge, then the zone’s children are considered
in the same way. This process continues until the series expansion can be used, or the
smallest zone is reached, and if the series will still not converge, the velocity contribution
is calculated from direct summation. The hierarchical structure in the algorithm means that
the largest possible zone is used at all times.

3.3. Implementation of Boundary Conditions

For convenience of description, in the following sections the cells immediately adjacent
to the body surface will be referred to as boundary cells and the remaining cells are called
non-boundary cells. At each time stept , after solving the vorticity transport equation, the
new vorticity values at timet +1t in the non-boundary cells are known. For the boundary
cells, however, the new vorticity values depend not only on the neighbouring cells through
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FIG. 5. Surface vorticity flux calculation.

convection and diffusion, but also on the new vorticity (flux) created at the body surface
during the time step1t . The rate of the vorticity creation per unit length at the body
surface can be represented by−ν ∂ω

∂n′ . Considering a boundary control volume with node
points j and j + 1 shown in Fig. 5, the vorticity at timet −1t is assumed to beω′. After
convection and diffusion through the interfaces (not including the new vorticity generated
at the body surface) during a time interval1t , which is represented by the symbols→ and
↔, respectively, the residual vorticity will beω′′. If the new vorticity in the control volume
at timet is calculated asω, then the vorticity flux per unit length through the body surface
is

−ν ∂ω
∂n′
= (ω − ω′′)AÄi

1t1s′
, (21)

whereAÄi is the area of control volumeÄi .
The new vorticity values for each boundary control volume, and hence the surface vorticity

flux entering each boundary control volume, can then be determined by implementing the
velocity boundary conditions. This leads to a set of linear algebraic equations which must
be solved at each time step to obtain the vorticty in the boundary cells.

Theoretically, for the formulation based on the vorticity and velocity description of the
flow, the no-penetration and no-slip conditions are equivalent in determining the boundary
vorticity flux; that is, either condition can be used but not both [23, 36]. More specifically,
if the no-slip condition is used, the no-penetration condition will be automatically satisfied,
and vice versa. In such a way, the entire boundary condition stated in Eq. (5) can be satisfied
without overspecifying the problem. In the actual calculation, the contour of the body is
divided into a number of panels, each of which also constitutes a segment (face) of the
boundary cells. If the no-slip condition is implemented, then, for each panel, a control point
must be chosen on which the tangential velocity induced by all the cells is zero. Usually,
the midpoint or quarter point of the panel is used. However, although it can be proven that
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implementation of the no-slip boundary condition leads to conservation of vorticity in the
flow field, it is impossible, by the numerical approach, to enforce the zero tangential velocity
condition at all points along the panel, which, it has been found, can lead to large errors
for long time calculation, as vorticity conservation cannot be guaranteed. One alternative
approach to satisfying the boundary conditions is by using the no-penetration condition,
which can, of course, be implemented at only one point for each panel. The best way, which
is implemented in the present study, is to ensure the mass flux through each panel is zero
by using

∫
Pj
Eu · En′ds′ = 0, if the body is stationary, for panelPj with node pointsj and

j + 1. More specifically, for each panelPj , j = 1, 2, . . . , Np, the mass fluxF ′j due to the
velocity field in the flow region consists of three parts; that is,

F ′j =
∫

Pj

Eu · En′ds′ = Fj F + Fj B + FjW , (22)

which represents respectively the contribution from the free stream, vorticity in the boundary
cells and vorticity in the remaining cells. The flux from the free streamFj F can be calculated
as

Fj F =
∫

j
Eu∞ · En′ds′j (23)

while the flux from the vorticity in the boundary cells is

Fj B =
Np∑
i=1

ωi (t)
∫

j
(ESi · En′) ds′j , (24)

where vorticity valuesωi (t), i = 1, 2 . . . Np are unknowns to be solved at each time step
and meaning of the vectorESi can be found in Eq. (14) and (15). The flux from the remaining
cells with non-zero vorticity is

FjW =
Nw∑
i=1

ωi (t)
∫

j
(ESi · En′) ds′j , (25)

whereNw is the total number of those cells. Note that, in Eq. (24), the vorticity in each
boundary cell includes the newly created vorticity from the body surface during the time
step fromt −1t to t and the relationship between this vorticity and the vorticity flux from
the body surface is given by Eq. (21).

On the other hand, it can be shown that if the no-penetration boundary condition is
implemented forNp − 1 panels, then this condition will be automatically satisfied for the
remaining panel. In other words, forNp panels, onlyNp − 1 equations are independent
and another equation is needed to make the solution unique. Fortunately, the requirement
of vorticity conservation, or more specifically, the integral of the vorticity flux at the body
surface being zero for a stationary body, can be used as the supplemental equation:

Np∑
j=1

∫
j
−ν ∂ω

∂n′
ds′j = 0. (26)

The advantage of this approach is that the conservation of both mass and vorticity in the
entire flow can be guaranteed during the calculation.
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3.4. Calculation of Surface Pressure and Body Forces

For viscous flow, the forces exerted on the body come from two sources: surface pressure
distribution and surface friction. For the body-oriented local orthogonal coordinate system
(Es′, En′), the tangential momentum equation can be written at the surface of a stationary body
as

1

ρ

∂p

∂s′
= −νEs′ · (∇ × Eω), (27)

which can be reduced to

1

ρ

∂p

∂s′
= −ν ∂ω

∂n′
. (28)

The term on the right-hand side of the equation is the rate of vorticity creation per unit
length at the solid surface and is known for each panel after implementing the bound-
ary conditions. So for each panel at the surface, the pressure gradient can be calculated
as

pj − pj−1

ρ1s′j
= −ν ∂ω

∂n′
. (29)

Once the pressure value at a reference point is assumed, the entire pressure distribution
along the body surface can be easily calculated by integrating Eq. (29) and the body forces
exerted by the surrounding fluid can then be integrated from the surface pressure distribution
and the tangential friction force.

For the particular case of flow around a circular cylinder, the drag and lift can be obtained
from

L = R
∮

bs

(
µR

∂ω

∂n′
− µω

)
cosθ dθ (30)

D = R
∮

bs

(
µR

∂ω

∂n′
− µω

)
sinθ dθ (31)

and the non-dimensional drag and lift coefficients of the body are then given by

CD = D

ρU2∞R
(32)

and

CL = D

ρU2∞R
, (33)

whereR is the radius of the circular cylinder.

4. RESULTS AND DISCUSSION

To show the accuracy and efficiency of the proposed method, a number of calculations
have been carried out for the flow around an impulsively started circular cylinder. This flow
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FIG. 6. Coordinate system and the grids.

problem has been extensively used as a prototype of unsteady separated flows and a number
of numerical and experimental results are available for validating new numerical methods.
In Fig. 6, the simple polar coordinate system used for the calculation is shown, in which
the grid is uniformly distributed in theθ direction and is stretched exponentially in ther
direction. Since the grids (cells) are needed only for the non-zero vorticity region, a small
portion of the entire grids are used in the actual calculation. In the following discussions,
both early stage development of the flow at various Reynolds numbers(Re= 2U∞R/ν)and
long time evolution of the wake (Karman vortex street) forRe= 1000 are presented, and
where possible, comparisons are made with other numerical and experimental results, par-
ticularly with the results of the high resolution simulations using the discrete vortex methods
[19, 29]. In [29], their results have been compared with a number of theoretical, numerical,
and experimental results, which provide a useful and reliable database for validating the
present method.

4.1. Fast Algorithm vs Direct Summation

To examine the performance (timing, accuracy, etc.) of the fast summation algorithm,
calculations using both the direct summation and fast algorithm are performed for a Reynolds
number of 1000. The grid points used are 160× 80 and the size of the first grid cell in the
normal direction to the surface is1Y1 = 0.02. The time step adopted for the calculation
is 1t = 0.01 and 600 time steps have been advanced. By the last time step(T = 6), the
number of active cells, i.e., the cells with a vorticity value not less than a specified value
ε = 10−6, is about 5600 and the CPU time used for the direct calculation is nearly six
times that of the fast algorithm. The number of terms used for calculating the Laurent series
expansion isNt = 12. In Fig. 7, the drag coefficients from both calculations are given and
no noticeable discrepancy occurs, which indicates the high accuracy of the fast algorithm.
The vorticity contours atT = 5 andT = 6 from the fast algorithm are also compared in
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FIG. 7. Accuracy of the fast algorithm: Drag coefficient.

Fig. 8 with its counterpart from the direct summation and, again, the two results are nearly
identical. During the calculation, no attempt has been made regarding the optimisation of
the fast algorithm and in the future, this will be investigated to gain the maximum benefit
in this regard. In the following discussion, all the results are obtained by using the fast
summation algorithm for calculating the velocity field.

4.2. Grid Effects

In order to evaluate the influence of the grid density on the solution, two cases have been
calculated for different grid sizes atRe= 1000. For the coarser grid, we have grid nodes
I × J = 160× 80 and1θ = 2π/160,1Y1 = 0.02; and when the grid nodes increase to
320× 160, the size of the grids has been halved in both directions. In Fig. 9, the drag
coefficients calculated from the different grids are compared. The very small discrepancy
indicates the grid systems are fine enough to capture all the flow structures for the Reynolds
number considered. In Fig. 10, the streamline patterns atT = 5 are also shown for the two
cases, from which it can be seen that, although a slight difference in the size of the secondary
vortex is noticeable, the global structures of the flow are the same.

4.3. Comparison with Other Results

In this section, a number of comparisons are made between the present results and other
numerical and experimental results for four different Reynolds numbers:Re= 550, 1000,
3000, and 9500, which represents the typical cases in terms of validation of numerical codes
[19].
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FIG. 8. Accuracy of the fast algorithm: Vorticity contours.

FIG. 9. Effect of grid density on the drag coefficient.
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FIG. 10. Effect of grid density on the streamlines.

Re= 550. In this test case, 160× 80 total grid points have been used with a minimum
grid size in the normal direction to the surface1Y1 = 0.02 and the time step1t = 0.01. In
Fig. 11, the drag coefficientCd for T < 5.0 is plotted and compared with the result from
Shankar and Van Dommelen [29], which shows a very good agreement. In Fig. 12, the radial
velocity distributions along the rear centre line of the circular cylinder are also compared
with the result from [29] forT = 1.0, 2.0, 3.0, 4.0, and 5.0, and again excellent agreement
has been achieved.

Re= 1000. For this case, 160× 80 grid points have been used and the time step to
advance the solution is1t = 0.01. In Fig. 13, the history of vorticity development for the
impulsively started flow are illustrated by the equi-vorticity contours, which shows that,
after the sudden start of the flow, the primary vortex is formed at the rear of the cylinder
and then, after time reachesT = 2, a secondary vortex begins to form and grow in the
middle of the main vortex. The corresponding streamline pattern forT = 5 is given in
Fig. 10, which clearly shows the secondary vortex is interacting with the primary vortex
forming the so-calledα phenomenon. The vorticity distribution at the surface for several
instants of time are given in Fig. 14. Generally, the present results are in good agreement
with those from the computations of Koumoutsakos and Leonard using a high resolution
discrete vortex method [19].
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FIG. 11. Comparison of drag coefficients,Re= 550.

FIG. 12. Radial velocity distribution along the rear centre line of the circular cylinder,Re= 550.
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FIG. 13. Vorticity contours:Re= 1000.

Figure 15 compares the drag coefficient evolution from the present study with other
numerical results. From this figure, it can be seen that the present result agrees particularly
well with the result from [19], although at least an order of magnitude more vortex elements
were reportedly used for their simulation.

Re= 3000. As discussed by Koumoutsakos and Leonard [19], at this Reynolds num-
ber, a series of new separation phenomena appear, which poses a challenge for numer-
ical methods to capture all the flow structures. For the results presented, 240× 150
grid points have been used with a minimum grid size in the normal direction to the
surface1Y1 = 0.01 and the time step1t = 0.005. Figs. 16 and 17 show the vorticity
distribution at the body surface and the equi-vorticity contours forT = 1.0, 2.0, 3.0,
4.0, 5.0, and 6.0, respectively. The interplay between the main vorticity and the sec-
ondary vorticity during the flow evolution has been explained in [19] and is reflected
in the development of the drag coefficient. For this particular case, a drag plateau
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FIG. 14. Surface vorticity distribution:Re= 1000.

appears betweenT = 2.2 and T = 3.0. From Fig. 18, it can been seen that this phe-
nomenon has been captured by the present method and the results compare well with
those presented by Koumoutsakos and Leonard [19] and Shankar and Van Dommelen [29].
For the present study, by the end of the calculation(T = 6.0), the number of active cells

FIG. 15. Comparison of drag coefficients,Re= 1000.
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FIG. 16. Vorticity contours:Re= 3000.

is around 13,000, while for the same timeT , 300,000 vortex elements have been used
in their study. The result from Chenget al. [7] by using a hybrid vortex method is also
presented in Fig. 18 which, due to the relatively low resolution and the additional nu-
merical diffusion, does not exhibit capture of the drag plateau. In Fig. 18, theCd result
from a higher grid resolution (320× 300) with1Y1 = 0.005 is also presented, which
shows that better agreement with the result from Shankar has been achieved by refining the
grids.

In Fig. 19, the streamlines for timeT = 5.0 are presented, which compare well with the
experimental flow visualisation of Bouard and Coutanceau [5].

In Fig. 20, the radial velocity distributions along the rear centre line of the circular cylinder
are compared with the result from [29] forT = 1.0, 2.0, 3.0, 4.0, and 5.0, and again excellent
agreement has been achieved.

Re= 9500. This case is the highestRe for which simulations are performed in the
present study and is by far the most interesting and challenging one [19]. For the results
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FIG. 17. Surface vorticity distribution:Re= 3000.

presented , 640× 280 grid points have been used with a minimum grid size in the normal
direction to the surface1Y1 = 0.005 and the time step1t = 0.002. Figures 21 and 22 show
the vorticity distribution at the body surface and the equi-vorticity contours forT = 1.0, 2.0,
and 3.0, respectively. In Fig. 23, theCd values are compared with those presented by Shankar

FIG. 18. Comparison of drag coefficients,Re= 3000.
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FIG. 19. Streamlines forRe= 3000: (A) Calculated, (B) Experiments [5].

and Van Dommelen [29] and Kruse and Fischer [20], which show a very good agreement
among the results from different methods. for the present study, by the end of the calculation
(T = 3.0), the number of active cells is around 33,000, while for the same timeT , 350,000
vortex elements have been used in the study by Koumoutsakos and Leonard [19] and 2044
× 254 grid points was used by Anderson and Reider [1]. In the Kruse and Fischer’s work,
a spectral elements method has been used to solve the Navier–Stokes equations in terms of
velocity and pressure. The computational grids consist of 6112 spectral element and there
are 10 nodes along each dimension in every element. Although a similar number of vortex
elements were employed in the Shankar’s work in which, by the end of timeT = 3.0, 60,000
vortices are required, a far more expensive procedure was adopted therein for calculating
the viscous diffusion.

In Fig. 24, the radial velocity distributions along the rear centre line of the circular cylinder
are also compared with the result from Shankar forT = 1.0, 2.0, 3.0.

4.4. Long Time Calculation: Re= 1000

In this section, the long time evolution of the flow around an impulsively started cylinder
atRe= 1000 is presented. The grid points used for the simulation areNI×NJ= 160× 220
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FIG. 20. Radial velocity distribution along the rear centre line of the circular cylinder,Re= 3000.

FIG. 21. Surface vorticity distribution:Re= 9500.
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FIG. 22. Vorticity contours:Re= 9500.
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FIG. 23. Comparison of drag coefficients,Re= 9500.

with1Y1 = 0.02 and the time step is1t = 0.01. Figure 25 gives two snapshots of the flow
in terms of vorticity contours, which show vortices alternately shedding from the rear part
of the cylinder. In Fig. 26, the corresponding streamlines forT = 168 are also given. The
evolution of the drag and lift coefficients is presented in Fig. 27. In the present study,

FIG. 24. Radial velocity distribution along the rear centre line of the circular cylinder,Re= 9500.
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FIG. 25. Vorticity contours forRe= 1000: long time calculation.

no artificial perturbation was applied to the flow to initiate the alternate vortex shedding;
instead, it is triggered solely by the numerical errors (truncation and roundoff errors) during
the calculation. After a long time evolution, sayT > 100, the vortex shedding process
finally settles down, forming the regular vortex pattern in the wake. From Fig. 27, it can be
calculated that the averageCd value afterT > 120 is about 1.52 and the Strouhal number
St is about 0.24. Both results are in good agreement with other numerical results from 2-D
simulations, as shown in Table I, where the experimental result from Roshko [27] is also
presented.
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FIG. 26. Streamlines forRe= 1000,T = 168.0.

FIG. 27. Evolution of drag and lift coefficients.

TABLE I

Drag coefficient and Strouhal number forRe = 1000

Behret al. Blackburnet al. Chenget al. Mittal et al. Roshko Present

Cd 1.53 1.51 1.23 1.53 1.20 1.52
St 0.241 − 0.206 0.245 0.21 0.240
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5. CONCLUSIONS

A new method based on the vorticity formulation has been presented in this paper for
unsteady incompressible viscous flow problems. By solving the vorticity transport equation
using the finite-volume method and calculating velocity using a modified Biot–Savart law,
only the flow field region with non-zero vorticity needs to be solved. High efficiency has
been achieved by employing an adaptive fast summation algorithm for the velocity calcu-
lations. During the calculation, mass and vorticity conservation can be guaranteed by using
this approach together with the method of implementing the surface boundary conditions.
The accuracy and efficiency of the method have been demonstrated by studying both the
early stage development and long term evolution of the flow around an impulsively started
circular cylinder at variousRenumber regimes and by comparing present results with other
numerical and experimental results. Particularly, for highRenumber simulations, a highly
accurate solution has been obtained without using excessively large numbers of grid points
which are needed by most other methods.

The method is currently being combined with the discrete vortex method in a domain
decomposition approach and is also being extended to 3-D flow problems.
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