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A novel approach is presented, based on the integral form of the vorticity formu-
lation, in which the vorticity transport equation is solved by using the cell-centred
finite-volume method, while the velocities needed at the centre of each control vol-
ume are calculated by a modified Biot—Savart formula in conjunction with a fast
summation algorithm. The vorticity and mass conservation in the flow are guaran-
teed during the calculation by virtue of the finite volume approach and the method of
implementing the boundary conditions at the body surface. As an example, both the
early stage development and long term evolution of the flow around an impulsively
started circular cylinder are computed using the method. The present results are com-
pared with other numerical and experimental results for the same flow problem and
show good agreement g 2001 Academic Press

1. INTRODUCTION

Vorticity and its related quantities, such as circulation, played an important role in clas
theoretical fluid dynamics [2, 18]. More recently, with the advent and rapid developme
of computer technology, vorticity-based methods have become one of the main focus a
of research in computational fluid dynamics. These methods can be generally divided
two categories, in terms of the governing equations upon which the numerical formulati
are constructed. One is based on the differential form of the Navier—Stokes equati
either in the velocity—vorticity or velocity—vector potential (stream function for 2-D case
formulations. The other is the so-called differential-integral formulation [36], in which a
integral equation for calculating velocity explicitly from the vorticity field is employed ir
place of the continuity equation and the definition of vorticity, while the vorticity transpo
equation remains in the differential form. This latter formulation is interesting in that, fir
it separates the kinematics (velocity calculation) from the kinetics (vorticity redistributior
which allows explicit, point-by-point calculation of velocity, and the velocity boundan
condition at infinity is exactly satisfied. Secondly, in this formulation, only the (usuall
compact) fluid region with non-zero vorticity needs to be solved.
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During the past two decades, by using the differential-integral formulation, both t
grid-based Euler method and the gridless Lagrangian method have been used to ad\
the solution in the space—time domain. The latter is usually referred to as the discrete vo
method, which has become more popular in recent years. In the pioneering works of Wu
coworkers, afinite difference scheme was used to solve the vorticity transport equation in
transformed complex plane. The integral equation for the velocity was solved by using fir
Fourier series expansions of the field variables at each circular ring of the O-grid and parti
evaluated analytically [33, 35]. Meanwhile, to reduce the possibility of numerical diffusic
in the grid-based method, the Lagrangian discrete vortex method has been developec
applied, notably by Chorin [8], Leonard [21, 22], Sarpkaya [28], and more recently amo
others by Spalart [32], Koumoutsakos and Leonard [19], anetah. [24]. In this method,
the continuous vorticity field is represented by a number of overlapping vortex partic
which are tracked in the flow according to the local velocity calculated by the Biot—Sav
law. To combat the associated high computational cost of the velocity calculation, adap
fast summation algorithms have been developed [12, 15, 16], which reduce the operati
cost fromO(N?) to O(N log N) depending on the implementation details, whisris the
total number of vortices in the flow. This method has been applied to calculate a numbe
unsteady flow problems, such as bluff body flow [19] and the flow around a pitching aerof
under the condition of dynamic stall [24, 32]. Problems, however, with the discrete vort
method are that, first, after some period of evolution of the vortices, the particle distrik
tion may become uneven, thus destroying the overlapping condition which necessitat
remeshing process [19]. In addition, a large number of vortices are needed to capture the
flow structures near the surface of the body. Secondly, it is not straightforward to inclu
viscous effects, including turbulence, in the calculation, although some developments h
been made recently [29]. Lastly, it is not clear how best to extend the method to 3-D fl
problems, due to the fact, among others, that the vortex particle representation in 3-D is
divergence-free.

In this paper, a novel approach has been adopted for solving the differential—intec
form of the Navier—Stokes equations—namely, the cell-centred finite-volume method |
been applied to the integral form of the vorticity transport equation, while the velocitit
needed at the centre of each control volume are calculated by using a modified Biot—Se
formula in conjunction with an adaptive fast summation algorithm. The methods employ
to implement the boundary conditions and to calculate the vorticity creation at the bc
surface ensure that both the mass and vorticity are conserved during the calculation. T
along with the inherent conservative property of the finite-volume method, guarantees
conservation of vorticity in the entire flow. Because the same strategy as the discrete vo
method has been used to calculate the velocity, the present method can be easily couplec
the discrete vortex method in the domain decomposition approach [9, 31]; i.e., the pre:
method can be used in the viscous region near the body surface and the vortex par
method can be applied to the outer region of the essentially inviscid flow. Furthermore
is straightforward to extend the method to 3-D flow problems, although the question
vorticity divergence remains.

In the following sections, the theoretical background of the method is reviewed, follow
by a detailed description of the numerical implementation, including the fast summati
algorithm and implementation of boundary conditions. By calculating the unsteady flc
around a circular cylinder at various Reynolds numbers, the accuracy and efficiency of
method are demonstrated and the effect of different implementations of boundary conditi
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on the solution is analysed. Finally, some conclusions are drawn from the study and a
discussion of future work is given.

2. MATHEMATICAL FORMULATION

Two-dimensional incompressible viscous flow can be described by the vortigity
velocity (0) form of the Navier—Stokes equations[36], which include
vorticity transport equation

?j—cf:a{)—?—}—ﬁ-Vw:vVZw Q)
continuity equation
V-i=0 )
the definition of vorticity
w= 2_;)( - Z—; . 3

For the problem of flow around a closed body, the boundary conditions needed for sol
the governing equations consist of two parts, both of which are given in terms of veloc
One is the so-called, far field condition in which the free-stream condition is applied
infinity:

o

I
o
3

(4)

The other is the condition on the body surface where the no-slip and no-penetration co
tions are imposed

U = Up(Xs, 1), (5)

whereli,(Xs, t) represents the velocity at the body surface. For the present formulatic
however, only one of the no-slip and no-penetration conditions is needed to uniquely
termine the velocity field from the vorticity distribution using Egs. (2) and (3), which i
turn determines the vorticity boundary condition needed for solving the vorticity transp
equation. Theoretically, in this aspect, it can be shown that [2, 23, 36], the no-slip bounc
condition and no-penetration condition are equivalent in determining the vorticity bound:
condition; i.e., implementation of no-slip condition leads to satisfying the no-penetrati
condition, and vice versa.

For unsteady flow problems, initial conditions are also required to start the calculati
This is achieved by either assuming that the flow starts impulsively from rest or prescrib
the velocity or vorticity distribution in the flow field.

It has long been known from the Helmholtz theory that the velocity field can be unique
determined from the vorticity field and relevant velocity boundary conditions. Quantit
tively, an explicit relationship between the velocity field and vorticity field has been give
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by Wu and Thompson [36] through solving Egs. (2) and (3) using Green’s identity and t
boundary conditions given in Egs. (4) and (5),

L 1 X', K x (X — X' _
u(x,t)=—/w(x ) qu); A+ i, (6)
D X — X'|

where the integral over ardain Eq. (6) is taken over the portion of the region containing
non-zero vorticity in fluid and rotating solid body. Equation (6) is a particular applicatio
of the Biot—Savart law. The use of Eq. (6) to calculate velocity from the integral ov
vorticity also makes it possible that only the non-zero vorticity region needs to be solve
which differs from most other vorticity-based methods in differential form of the governin
equations. Another issue in the vorticity-based formulation is the conservation of vortici
From this condition for a stationary body, it can be stated that the entire vorticity enteri
the fluid region through the body surface(see Fig. 1) should always be zero,

f 2% 4 — 0, (7)
bs on’

The importance of this condition in constructing a numerical method will be discussed
detail later.

Itis well known that for incompressible viscous flow, the vorticity can only be generate
at the surface of the body due to the no-slip boundary condition. The vorticity in the inter
of the fluid domain, which in turn determines the velocity field through the Biot—Savart la
is the consequence of diffusion and convection of the boundary vorticity. From this ba
idea, together with Egs. (1) and (6) which represent the kinetic and kinematic aspect
the entire flow problem, respectively, vorticity-based methods [8, 36], including the pres
method, can be constructed. The kinematic step determines the velocity field induced by
vorticity distribution and relevant boundary conditions, while the kinetic step redistribut
the vorticity within the flow domain by convection and diffusion. In the real world, these tw
steps should occur simultaneously; however, in the numerical procedure, it is reason

b Y
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FIG. 1. Definition sketch of the flow around a cylinder.
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to assume that the following three steps are needed to advance the solution to a new
level:

1. calculation of vorticity creation in terms of vorticity flux into the flow through the
surface (boundary vorticity) by using Eqg. (6) and implementing the relevant bound:z
conditions—this process usually leads to a system of linear algebraic equations to be sc
at every time step with vorticity flux or boundary vorticity values as the unknowns;

2. calculation of the velocity using the Biot—Savart Law; note that, at this step, tl
vorticity in Eq. (6) includes the newly created vorticity from the body surface throug
viscous diffusion (flux).

3. redistribution of the vorticity in the flow field by solving the vorticity transport equation

After step 3, the velocity boundary condition at the body surface is usually no long
satisfied and we need to return to step 1, which constitutes a full loop.

The following sections will detail the specific methods used in the current study for eg
part of the three steps.

3. NUMERICAL IMPLEMENTATION

3.1. Solution of Vorticity Transport Equation

The solution of the vorticity transport equation using the cell-centred finite volun
method is straightforward. For each control volufag see Fig. 2, the vorticity transport
equation can be written in the integral form

2 wdQ+/Ua)~ﬁdS=v/Vw-ﬁds (8)
ot Jo, s s

wherei is the unit normal vector of the control volume surface

In the present study, the two-stage, second-order Runge—Kutta method has been us
advance the solution in the time domain and either the second-order central scheme (m
point rule) or the upwind scheme, depending on the local grid Reynolds number, is use
calculate the convective flux term for each of the cell faces. For diffusive fluxes, a sim|
linear interpolation can be used for calculating the gradient for an orthogonal coordin
system which is the case in the present study. If more general cases with non-orthog

a S
H .Qc K
17§ 2
n

FIG. 2. Control volume.
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coordinate systems are involved, the method involving the transformation of the deriva
into a surface integral using the Gauss theorem can be employed [13].

Since the vorticity transport equation, which redistributes the vorticity within the flui
domain, is solved in the conservative form by using the finite volume approach, no vortic
will be generated in this process by numerical errors and the only concern of vortic
conservation will lie entirely on the process of vorticity generation at the solid boundarie
which will be discussed later.

3.2. Velocity Calculation

Once the vorticity distribution in the flow is known, the velocities needed at the centr
of the control volumes with non-zero vorticity and some neighbouring control volume
with zero vorticity can be calculated by using Eg. (6). By assuming the vorticity has
uniform distribution within each control volume when evaluating the integral in Eq. (6
which is consistent with the cell-centred finite-volume approach, the velocity at a{goint
in particular at the centre of each control volume, is given by

N, C > >
Lo 1 ¢ wi (HK x (Xj —X') _
uj(Xj,t) = — — dQi + U, 9
R hzl/ e AL (©)
whereN, is the total number of the control volumes on which the integral is performed.
For each control volume;, by virtue of the following vector identitiesy x (fG) =
fVxG+VfxGandf[VxG d2 =[G x fids theintegral in Eq. (9) can be trans-
formed into the circuit integral around the cell, see Fig. 3,

| 288D o (10)
o 1% =X
=—/ wi(t)ExV/lnRj — X' dQ; (12)
Qi
=/ V' x (o (OKIN|Xj — X' d (12)
Qi
=/a)i(t)l2xﬁ|n|>?j _%|ds (13)
S
.
4 }3 3
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FIG. 3. Velocity contribution from each control volume.
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4

= wi(t)zrk/ In|%; — X' dl (14)
k=1 Ik

= o (S, (15)

Wherefk is the unit direction vector of the cell segménand quadrilateral cells have been
assumed. To evaluate the integral, either an analytic expression or numerical approxime
can be used, and for the neighbouring cells, the integral needs to be calculated only
for their common segment.

Itis easy to check that in calculating the velocity at a point (cell centre), the influence
all the cells with non-zero vorticity must be taken into account. This involves a calculati
of O(sz) interactions forN, control volumes with non-zero vorticity, which can lead to a
large computational cost.

Fortunately, during the past decade, several fast summation algorithms have been d
oped originally for the discrete vortex method. In this study, the adaptive fast algoritt
proposed by Van Dommelest al.[12] has been modified for calculating the velocity field.
The basic idea in the method is that when the velocity at the ceqtisy, of a control
volume; of areaAg, is calculated, the influence of vorticity from the entire flow domair
can be divided into the near field, on which the direct summation using Eq. (15) will |
performed, and far field, in which a point vortex with strenfittr w; Ag, located ai; is
used temporarily to represent the entire vorticity in the control volémnand the indirect
fast summation method can be applied

U(Xi) = 0'(Xi)|near field+ U7 (Xi) |far field (16)
in which we have
1 Mo 4
0 (%) Inear field = - ij(t)zlk/ In|Xj — Xi| dl (17)
T k=1
and
Ne s o
O 1 - Xi — X
U7 (Xi) Ifar field = > ; Ik x s (18)

whereNp and Ng are the total number of control volumes which are eligible for direc
summation and indirect (fast) summation, respectively.
By using the complex notation, Eq. (18) can be expressed as

1 & 1
u(zZ) —iv'(Zy) = — -— 19
(Z)) —iv'(Z) 2ni]§=:lzi—zj (19)
whereZ is the complex position gt andu® andv® are the two components &f .
The only criterion for calculating the near field or far field effects can be determine
by the following process. To implement the fast summation algorithm efficiently, a squi:
adaptive zonal decomposition is employed. The whole flow domain containing non-z
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FIG. 4. Adaptive fast summation algorithm.

vorticity is initially contained in a single square zone. This is then divided into four sul
zones. Each zone is then further subdivided into four new zones, provided that there
minimun number of particles in the zone, thus creating a hierarchical structure of zol
as shown in Fig. 4. For each zone, the parent zone and any children (sub-zones) o
zone are recorded, along with which particles are stored in that zone. By using the comj
notation, the centres of the control volumand the zone can be representedbandZ,
respectively. Then the contribution of the zone to the velocity at piman be calculated
from a series expansion using Eqg. (20) below, provided the distance beRyesm Z.

is greater than some factor times the radiusf the zone so that the Laurent series will
converge

Nt
ut(Z) —iv(Z) =)

k=1

oK

2ri(Z; — Zo)¥’ (20)
whereay = ZT” Iz — Z)k 1 andNjy, is the total number of vortex particles contained
in the zone. Once the influence of a zone is calculated, the children of this zone are t
ignored, as all the particles in the zone have been taken into account. If the centre of a col
volume is too close t@. for the series to converge, then the zone’s children are consider
in the same way. This process continues until the series expansion can be used, o
smallest zone is reached, and if the series will still not converge, the velocity contributi
is calculated from direct summation. The hierarchical structure in the algorithm means
the largest possible zone is used at all times.

3.3. Implementation of Boundary Conditions

For convenience of description, in the following sections the cells immediately adjace
to the body surface will be referred to as boundary cells and the remaining cells are ca
non-boundary cells. At each time stgmfter solving the vorticity transport equation, the
new vorticity values at timé+ At in the non-boundary cells are known. For the boundary
cells, however, the new vorticity values depend not only on the neighbouring cells throt
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FIG. 5. Surface vorticity flux calculation.

convection and diffusion, but also on the new vorticity (flux) created at the body surfa
during the time stepAt. The rate of the vorticity creation per unit length at the body
surface can be represented by%. Considering a boundary control volume with node
pointsj andj + 1 shown in Fig. 5, the vorticity at time— At is assumed to be’. After
convection and diffusion through the interfaces (not including the new vorticity generat
at the body surface) during a time intervst, which is represented by the symbeisand
<, respectively, the residual vorticity will ke”. If the new vorticity in the control volume
at timet is calculated as, then the vorticity flux per unit length through the body surface
is
i
_ydeo _e-oDhg (21)
an’ AtAS

whereAg, is the area of control volume; .

The new vorticity values for each boundary control volume, and hence the surface vorti
flux entering each boundary control volume, can then be determined by implementing
velocity boundary conditions. This leads to a set of linear algebraic equations which m
be solved at each time step to obtain the vorticty in the boundary cells.

Theoretically, for the formulation based on the vorticity and velocity description of t
flow, the no-penetration and no-slip conditions are equivalent in determining the bound
vorticity flux; that is, either condition can be used but not both [23, 36]. More specificall
if the no-slip condition is used, the no-penetration condition will be automatically satisfie
and vice versa. In such a way, the entire boundary condition stated in Eq. (5) can be sati
without overspecifying the problem. In the actual calculation, the contour of the body
divided into a number of panels, each of which also constitutes a segment (face) of
boundary cells. If the no-slip condition is implemented, then, for each panel, a control pc
must be chosen on which the tangential velocity induced by all the cells is zero. Usue
the midpoint or quarter point of the panel is used. However, although it can be proven |
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implementation of the no-slip boundary condition leads to conservation of vorticity in tf
flow field, itisimpossible, by the numerical approach, to enforce the zero tangential veloc
condition at all points along the panel, which, it has been found, can lead to large err
for long time calculation, as vorticity conservation cannot be guaranteed. One alterna
approach to satisfying the boundary conditions is by using the no-penetration conditi
which can, of course, be implemented at only one point for each panel. The best way, wi
is implemented in the present study, is to ensure the mass flux through each panel is
by usingfPj i-nds =0, if the body is stationary, for pané; with node pointsj and

j + 1. More specifically, for each pang}, j = 1,2, ..., Np, the mass flux; due to the
velocity field in the flow region consists of three parts; that is,

Fj/z/ U-ﬁ’dSJZFjF—FFjB-FFjW, (22)

PJ

which represents respectively the contribution from the free stream, vorticity in the bound
cells and vorticity in the remaining cells. The flux from the free strégmcan be calculated
as

Fir = /am s (23)
j

while the flux from the vorticity in the boundary cells is

NP
Fe=Y o0 [G s, (24)
i=1 J

where vorticity values; (t),i = 1,2... N, are unknowns to be solved at each time stey
and meaning of the vect& can be found in Eq. (14) and (15). The flux from the remaining
cells with non-zero vorticity is

N,
Fiw =Y o (t)/(é - ds, (25)
i=1 J

whereN,, is the total number of those cells. Note that, in Eq. (24), the vorticity in eac
boundary cell includes the newly created vorticity from the body surface during the tir
step fromt — At tot and the relationship between this vorticity and the vorticity flux from
the body surface is given by Eq. (21).

On the other hand, it can be shown that if the no-penetration boundary conditior
implemented folN, — 1 panels, then this condition will be automatically satisfied for the
remaining panel. In other words, fd¥, panels, onlyN, — 1 equations are independent
and another equation is needed to make the solution unique. Fortunately, the requirer
of vorticity conservation, or more specifically, the integral of the vorticity flux at the bod
surface being zero for a stationary body, can be used as the supplemental equation:

Z/J—vﬁd (26)

The advantage of this approach is that the conservation of both mass and vorticity in
entire flow can be guaranteed during the calculation.



INCOMPRESSIBLE UNSTEADY VISCOUS FLOWS 525

3.4. Calculation of Surface Pressure and Body Forces

For viscous flow, the forces exerted on the body come from two sources: surface pres
distribution and surface friction. For the body-oriented local orthogonal coordinate syst
(8, i), the tangential momentum equation can be written at the surface of a stationary b
as

10 - -
;a—g = —US/ . (V X a)), (27)
which can be reduced to
10 0
ZoP_ 0@ (28)
p 0s an’

The term on the right-hand side of the equation is the rate of vorticity creation per u
length at the solid surface and is known for each panel after implementing the bou
ary conditions. So for each panel at the surface, the pressure gradient can be calcu
as
PP 0o (29)
pAS on’

Once the pressure value at a reference point is assumed, the entire pressure distrik
along the body surface can be easily calculated by integrating Eq. (29) and the body fo
exerted by the surrounding fluid can then be integrated from the surface pressure distribt
and the tangential friction force.

For the particular case of flow around a circular cylinder, the drag and lift can be obtair
from

' 9
L=R % <MR‘“ — ,ua)) cosh db (30)
bs on’
9 .
D= R% (MR—“’ _ ,uco) siné do (31)
bs an’

and the non-dimensional drag and lift coefficients of the body are then given by

D

Co=—— 32
0= U7R (32)
and
D
CL=——>— 33
L= TR (33)

whereR is the radius of the circular cylinder.

4. RESULTS AND DISCUSSION

To show the accuracy and efficiency of the proposed method, a number of calculati
have been carried out for the flow around an impulsively started circular cylinder. This fl
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FIG. 6. Coordinate system and the grids.

problem has been extensively used as a prototype of unsteady separated flows and a nt
of numerical and experimental results are available for validating new numerical metha
In Fig. 6, the simple polar coordinate system used for the calculation is shown, in wh
the grid is uniformly distributed in theé direction and is stretched exponentially in the
direction. Since the grids (cells) are needed only for the non-zero vorticity region, a sn
portion of the entire grids are used in the actual calculation. In the following discussio
both early stage development of the flow at various Reynolds nurtRers 2U.,R/v) and
long time evolution of the wake (Karman vortex street) Re= 1000 are presented, and
where possible, comparisons are made with other numerical and experimental results,
ticularly with the results of the high resolution simulations using the discrete vortex methc
[19, 29]. In [29], their results have been compared with a number of theoretical, numeric
and experimental results, which provide a useful and reliable database for validating
present method.

4.1. Fast Algorithm vs Direct Summation

To examine the performance (timing, accuracy, etc.) of the fast summation algorith
calculations using both the direct summation and fast algorithm are performed for a Reyn
number of 1000. The grid points used are 2680 and the size of the first grid cell in the
normal direction to the surface i8Y; = 0.02. The time step adopted for the calculation
is At = 0.01 and 600 time steps have been advanced. By the last tim&Tste®), the
number of active cells, i.e., the cells with a vorticity value not less than a specified va
e = 1075, is about 5600 and the CPU time used for the direct calculation is nearly s
times that of the fast algorithm. The number of terms used for calculating the Laurent se
expansion ifN; = 12. In Fig. 7, the drag coefficients from both calculations are given an
no noticeable discrepancy occurs, which indicates the high accuracy of the fast algorit
The vorticity contours aT = 5 andT = 6 from the fast algorithm are also compared in
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FIG. 7. Accuracy of the fast algorithm: Drag coefficient.

Fig. 8 with its counterpart from the direct summation and, again, the two results are ne:
identical. During the calculation, no attempt has been made regarding the optimisatiol
the fast algorithm and in the future, this will be investigated to gain the maximum bene
in this regard. In the following discussion, all the results are obtained by using the f
summation algorithm for calculating the velocity field.

4.2. Grid Effects

In order to evaluate the influence of the grid density on the solution, two cases have k
calculated for different grid sizes Re= 1000. For the coarser grid, we have grid node:
I x J =160x 80 andAf = 27 /160, AY; = 0.02; and when the grid nodes increase to
320 x 160, the size of the grids has been halved in both directions. In Fig. 9, the di
coefficients calculated from the different grids are compared. The very small discrepa
indicates the grid systems are fine enough to capture all the flow structures for the Reyn
number considered. In Fig. 10, the streamline patteriis-at5 are also shown for the two
cases, from which it can be seen that, although a slight difference in the size of the secon
vortex is noticeable, the global structures of the flow are the same.

4.3. Comparison with Other Results

In this section, a number of comparisons are made between the present results and
numerical and experimental results for four different Reynolds numBers: 550, 1000,
3000, and 9500, which represents the typical cases in terms of validation of numerical cc
[19].
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FIG. 8. Accuracy of the fast algorithm: Vorticity contours.
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FIG. 9. Effect of grid density on the drag coefficient.
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Streamlines, RE = 1000, T = 5.0, Grids: 160x80

FIG. 10. Effect of grid density on the streamlines.

Re=550. In this test case, 168 80 total grid points have been used with a minimum
grid size in the normal direction to the surfat®; = 0.02 and the time stept = 0.01. In
Fig. 11, the drag coefficier€@q for T < 5.0 is plotted and compared with the result from
Shankar and Van Dommelen [29], which shows a very good agreement. In Fig. 12, the ra
velocity distributions along the rear centre line of the circular cylinder are also compal
with the result from [29] folT = 1.0, 2.0, 3.0, 4.0, and 5.0, and again excellent agreeme
has been achieved.

Re= 1000. For this case, 16& 80 grid points have been used and the time step t
advance the solution iat = 0.01. In Fig. 13, the history of vorticity development for the
impulsively started flow are illustrated by the equi-vorticity contours, which shows the
after the sudden start of the flow, the primary vortex is formed at the rear of the cylinc
and then, after time reachds= 2, a secondary vortex begins to form and grow in the
middle of the main vortex. The corresponding streamline patter fer5 is given in
Fig. 10, which clearly shows the secondary vortex is interacting with the primary vort
forming the so-called phenomenon. The vorticity distribution at the surface for severe
instants of time are given in Fig. 14. Generally, the present results are in good agreer
with those from the computations of Koumoutsakos and Leonard using a high resolut
discrete vortex method [19].
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FIG. 12. Radial velocity distribution along the rear centre line of the circular cylinder: 550.
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T=1.0, Re = 1000 T=2.0, Re =1000

-1
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-1 0 1 2 3 -1 0 1 2 3

FIG. 13. \orticity contours:Re= 1000.

Figure 15 compares the drag coefficient evolution from the present study with otl
numerical results. From this figure, it can be seen that the present result agrees partict
well with the result from [19], although at least an order of magnitude more vortex eleme
were reportedly used for their simulation.

Re= 3000. As discussed by Koumoutsakos and Leonard [19], at this Reynolds nul
ber, a series of new separation phenomena appear, which poses a challenge for nt
ical methods to capture all the flow structures. For the results presentedx 2vBD
grid points have been used with a minimum grid size in the normal direction to t
surfaceAY; = 0.01 and the time stepht = 0.005. Figs. 16 and 17 show the vorticity
distribution at the body surface and the equi-vorticity contoursTfoe 1.0, 2.0, 3.0,
4.0, 5.0, and 6.0, respectively. The interplay between the main vorticity and the s
ondary vorticity during the flow evolution has been explained in [19] and is reflecte
in the development of the drag coefficient. For this particular case, a drag plate
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FIG. 14. Surface vorticity distributionRe= 1000.

appears betweem = 2.2 and T = 3.0. From Fig. 18, it can been seen that this phe-
nomenon has been captured by the present method and the results compare well
those presented by Koumoutsakos and Leonard [19] and Shankar and Van Dommelen
For the present study, by the end of the calculatibn= 6.0), the number of active cells

Present
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(19] 5

P U SR 4
02k L]
ok i
02 i ; . ; ;
0 1 2 3 4 5 6
time t
FIG. 15. Comparison of drag coefficient®e= 1000.
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T=1.0, Re = 3000 T=2.0, Re = 3000
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FIG. 16. \Vorticity contours:Re= 3000.

is around 13,000, while for the same tirle 300,000 vortex elements have been use
in their study. The result from Chergg al. [7] by using a hybrid vortex method is also
presented in Fig. 18 which, due to the relatively low resolution and the additional r
merical diffusion, does not exhibit capture of the drag plateau. In Fig. 18Cshesult
from a higher grid resolution (32& 300) with AY; = 0.005 is also presented, which
shows that better agreement with the result from Shankar has been achieved by refinin
grids.

In Fig. 19, the streamlines for time = 5.0 are presented, which compare well with the
experimental flow visualisation of Bouard and Coutanceau [5].

In Fig. 20, the radial velocity distributions along the rear centre line of the circular cylind
are compared with the result from [29] for= 1.0, 2.0, 3.0, 4.0, and 5.0, and again excellen
agreement has been achieved.

Re = 9500. This case is the highe®efor which simulations are performed in the
present study and is by far the most interesting and challenging one [19]. For the res
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Surface Vorticity Distribution, Re = 3000
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FIG. 17. Surface vorticity distributionRe= 3000.

presented , 64& 280 grid points have been used with a minimum grid size in the norm:
direction to the surfacaY; = 0.005 and the time stefit = 0.002. Figures 21 and 22 show
the vorticity distribution at the body surface and the equi-vorticity contours fer1.0, 2.0,
and 3.0, respectively. In Fig. 23, tlg values are compared with those presented by Shank

T T ¥ T ] T T T T

ok ......... ......... ........ - Present, gridS: 240*150 ]
: § 3 - -~  Present, grids: 320*300
18F- - Peeeeans P e o o Shankar(1 996) .
g § f *  x  Koumoutsakos & Leonard(1995
1‘6||_ vvvvvvvv ......... ......... . + + Cheng et al(" 997) -

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time

FIG. 18. Comparison of drag coefficient®e= 3000.
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Streamlines, RE = 3000, T = 5.0, Grids: 240x150

FIG. 19. Streamlines foRe= 3000: (A) Calculated, (B) Experiments [5].

and Van Dommelen [29] and Kruse and Fischer [20], which show a very good agreem
among the results from different methods. for the present study, by the end of the calcula
(T = 3.0), the number of active cells is around 33,000, while for the sameTin3®0,000
vortex elements have been used in the study by Koumoutsakos and Leonard [19] and :
x 254 grid points was used by Anderson and Reider [1]. In the Kruse and Fischer’s wc
a spectral elements method has been used to solve the Navier—Stokes equations in tet
velocity and pressure. The computational grids consist of 6112 spectral element and t
are 10 nodes along each dimension in every element. Although a similar number of vo
elements were employed in the Shankar’s work in which, by the end offtiea8&.0, 60,000
vortices are required, a far more expensive procedure was adopted therein for calculz
the viscous diffusion.

In Fig. 24, the radial velocity distributions along the rear centre line of the circular cylind
are also compared with the result from ShankarTfos 1.0, 2.0, 3.0.

4.4. Long Time Calculation: Re- 1000

In this section, the long time evolution of the flow around an impulsively started cylind
atRe= 1000 is presented. The grid points used for the simulatioNbseNJ= 160 x 220
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Radial velocity distribution along the rear centre line of the circular cylinRer= 3000.

Surface Vorticity Distribution, Re = 9500

300

200

100

T T T T T T T T

20 40 60 80 100 120 140 160 180

FIG. 21. Surface vorticity distributionRe= 9500.
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T =10, Re = 9500
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FIG. 22. \Vorticity contours:Re= 9500.
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FIG. 23. Comparison of drag coefficientRe= 9500.

with AY; = 0.02 and the time step i&t = 0.01. Figure 25 gives two snapshots of the flow
in terms of vorticity contours, which show vortices alternately shedding from the rear p:
of the cylinder. In Fig. 26, the corresponding streamlinesTfee 168 are also given. The

evolution of the drag and lift coefficients is presented in Fig. 27. In the present stu

1 {0 o Shankar(1996) |
: Present, T=0.5,1.0,1.5,2.0,2.5,3.0

1 |
1 15 2 25
X

FIG. 24. Radial velocity distribution along the rear centre line of the circular cylinRers= 9500.
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FIG. 25. \Vorticity contours forRe= 1000: long time calculation.

no artificial perturbation was applied to the flow to initiate the alternate vortex sheddir
instead, it is triggered solely by the numerical errors (truncation and roundoff errors) dur
the calculation. After a long time evolution, sdy> 100, the vortex shedding process
finally settles down, forming the regular vortex pattern in the wake. From Fig. 27, it can
calculated that the avera@k value afterT > 120 is about 1.52 and the Strouhal numbel
Stis about 0.24. Both results are in good agreement with other numerical results from
simulations, as shown in Table I, where the experimental result from Roshko [27] is a
presented.
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FIG. 26. Streamlines foRe= 1000,T = 1680.
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FIG. 27. Evolution of drag and lift coefficients.

TABLE |
Drag coefficient and Strouhal number for Re = 1000

Behretal. Blackburnetal. Chengetal. Mittal etal. Roshko Present

Cq 1.53 151 1.23 1.53 1.20 1.52
S 0.241 — 0.206 0.245 0.21 0.240
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5. CONCLUSIONS

A new method based on the vorticity formulation has been presented in this paper
unsteady incompressible viscous flow problems. By solving the vorticity transport equat
using the finite-volume method and calculating velocity using a modified Biot—Savart |
only the flow field region with non-zero vorticity needs to be solved. High efficiency hs
been achieved by employing an adaptive fast summation algorithm for the velocity cal
lations. During the calculation, mass and vorticity conservation can be guaranteed by u
this approach together with the method of implementing the surface boundary conditic
The accuracy and efficiency of the method have been demonstrated by studying bott
early stage development and long term evolution of the flow around an impulsively star
circular cylinder at variouRenumber regimes and by comparing present results with oth
numerical and experimental results. Particularly, for FRgmumber simulations, a highly
accurate solution has been obtained without using excessively large numbers of grid pc
which are needed by most other methods.

The method is currently being combined with the discrete vortex method in a dom:
decomposition approach and is also being extended to 3-D flow problems.
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